
QUANTUM® series

Light, extremely quiet and low-vibration for high speeds and accelerations

UAT eries

- 1 Universal end connectors (UMB)
- 2 Aluminum stays available in 1 mm width sections
- 3 Aluminum stays in reinforced design
- 4 Plastic stays available in 8 or 16 mm width sections
- 5 Can be opened quickly on the inside and the outside for cable laying
- 6 Fixable dividers
- 7 Replaceable glide shoes
- 8 Strain relief combs
- 9 C-rail for strain relief elements

Virtually no polygon effect

QUANTUM® Cable carrier Low-vibration with polygon operation effect

Features

- » Cleanroom compatible: no links, no link wear
- » Extremely quiet, 31 db (A)*
- » Extremely light
- » For high accelerations up to 300 m/s²
- » For high operating speeds up to 40 m/s
- » Extremely long service life: ≥ 25 million motion cycles

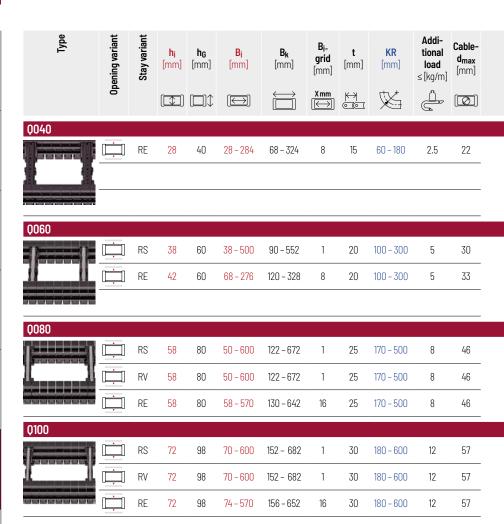
- » TÜV type tested as per 2PfG 1036/10.97
- » Large selection of stay systems and separating options for cables

^{*} Tested: 0060.100.100 by TÜV Rheinland. The sound pressure level for the measured area was measured at a distance of 0.5 m for smooth and jerky movements.

Ideal for highly dynamic applications

Subject to change without notice.

3D movements: the driver connection can be moved laterally and can be rotated by up to ±30°



Side bands made from special plastic and steel cables in the support floor for an extremely long service life

UAT	series

Cleanroom compatible and long service life

Continuous side bands are used. In contrast to conventional hole-and-bolt connections, hardly any wear occurs (link abrasion), which makes QUANTUM® ideal for use in cleanrooms.

Extremely long service life through

- » No link abrasion due to absence of hole-and-bolt connections
- » Continuous side bands made from special plastic with integrated steel cables

Ideal for highly dynamic applications extruded side bands

The QUANTUM® runs extremely quietly and with low vibrations. The absence of links and the very small pitch means that the so-called polygon effect is reduced to a minimum. Due to the very guiet running, the QUANTUM® cable carrier system is ideal for applications with low-vibration linear drives.

QUANTUM® series | Overview

Unsuppo	rted arrar	ngement	Glidin	g arrange	ment	I	nner Dis	tributior	1		oveme		Page
$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v max ≤[m/s]	$a_{\text{max}} \le [\text{m/s}^2]$	$\begin{array}{c} \textbf{Travel} \\ \textbf{length} \\ \leq [m] \end{array}$	v max ≤[m/s]	\mathbf{a}_{max} $\leq [\text{m/s}^2]$	TS0	TS1	TS2	TS3	vertical hanging or standing	lying on the side	rotating arrangement	R
										vertica or	lyingo	arre	
3.2	40	300	30	2	3	•	•	·	-	•	•	-	464
5	30	160	50	3	2 - 3	•	•			•	•	-	470
5	30	160	50	3	2 - 3	•	•	-	•	•	•	-	474
6.4	25	100	80	3	2 – 3	•	•	•	•	•	•	-	480
6.4	25	100	80	3	2 – 3	•	•	•	•	•	•	_	484
6.4	25	100	80	3	2 - 3	•	•	•	•	•	•	-	488
7.8	20	70	95	3	2-3	•	•	-	•	•	•	-	494
7.8	20	70	95	3	2 - 3	•	•	•	•	•	•	-	498
7.8	20	70	95	3	2 - 3	•	•	•	•	•	•	-	502

UAT

0040

Pitch 15 mm

Inner height 28 mm

Inner widths 28 - 284 mm

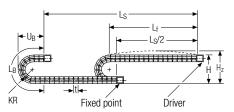
Bending radii 60 - 180 mm

Stay variants

Plastic stay RE page 464

Frame screw-in stay

- Plastic profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.


TOTALTRAX® complete systems

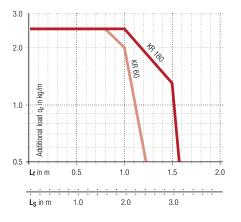
Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

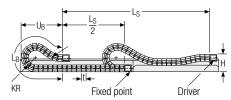
TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

KR	Н	L_B	U_B
[mm]	[mm]	[mm]	[mm]
60	175	369	178
75	205	416	193
90	235	463	208
110	275	526	228
150	355	651	268
180	415	746	298

Load diagram for unsupported length depending on the additional load.


Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.


Intrinsic cable carrier weight $q_k = 0.8$ kg/m. For other inner widths, the maximum additional load changes.

Speed up to 2 m/s

The gliding cable carrier has to be routed in a channel. See p. 844.

Travel length up to 30 m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

UNIFLEX dvanced series

M series

XL series

0UANTUM® series

TKR series

TKA series

ROTUM® series

K series

UNIFLEX Advanced series

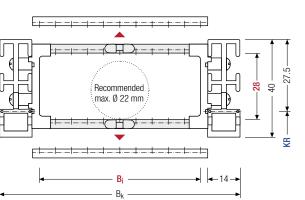
> M series

XL series

UANTUM® Series

Plastic stay RE – screw-in frame stay

- Plastic profile bars for light to medium loads. Assembly without screws.
- Available customized in 8 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 6th section, standard (HS: half-stayed)

Stays on every 3rd section (VS: fully-stayed)

 B_i 28 – 284 mm in 8 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

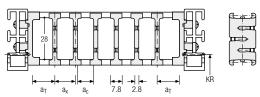
Cable carrier length L_k rounded to pitch t

h _i [mm]	h _G [mm]		B i [mm]					B _k [mm]	KR [mm]	q _k [kg/m]					
		28	36	44	52	60	68	76	84	92	100	108		60 75	0.63
28	40	116	124	132	140	148	156	164	172	180	188	196	$B_i + 40$	90 110	-
		204	212	220	228	236	244	252	260	268	276	284		150 180	0.98

Order example

Divider systems

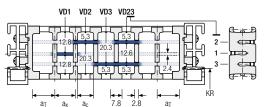
The divider system is mounted on each crossbar as a standard – on every 6th section for stay mounting (HS).


As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (version B). The groove in the frame stay faces outwards.

Divider system TS0 without height separation

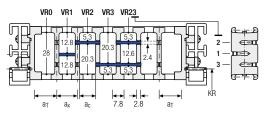
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	8	8	5.2	-	-
В	14	8	5.2	8	-


The dividers are movable within the cross section (version A) or fixed (version B).

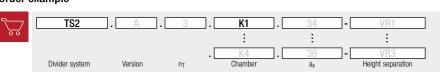
Divider system TS1 with continuous height separation

Vers.					a _{x grid} [mm]	
Α	8	20	8	5.2	-	2
В	14	22	8	5.2	8	2

The dividers are movable within the cross section (version A) or fixed (version B).



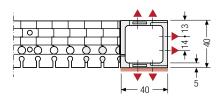
Divider system TS2 with partial height separation

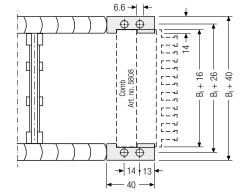

Vers.		[mm]	a _{c min} [mm]	a _{x grid} [mm]	mir
В	14	8*/24	5.2*/21.2	8	2

* for VR0

With grid distribution (8 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section (version A) or fixed (version B).

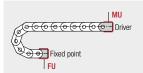
Order example


UNIFLEX Advanced series


X. eries

0040 | End connectors

Universal end connectors UMB plastic (standard)


The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

Assembly options

Recommended tightening torque: 5 Nm for screws M5 - 8.8

Connection point

F - fixed point M - driver

Connection type

U - universal end connector

Order example

We recommend the use of strain reliefs at the driver and fixed point. See from p. 904.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ downloads

Configure your custom cable carrier here: online-engineer.de

TKA eries

Q060

Inner heights 38 – 42 mm

Inner widths 38 - 500 mm

Bending radii 100 - 300 mm

Stay variants

Aluminum stay RSpage 470

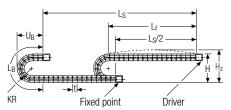
Frame stay, narrow "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

Plastic stay RE page 474

Frame screw-in stay

- Plastic profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.


TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

KR	Н	L_B	U_B
[mm]	[mm]	[mm]	[mm]
100	288	554	264
120	328	617	284
150	388	711	314
190	468	837	354
250	588	1025	414
300	688	1182	464

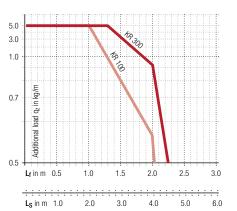
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.

Intrinsic cable carrier weight $q_k = 1.5 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Speed up to 30 m/s

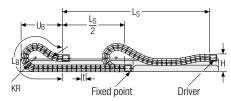
Travel length


up to 5 m

Acceleration up to 160 m/s2

Additional load up to 5 ka/m

UNIFLEX dvanced series


⊼ eries

QUANTUM® series

TKR series

TKA eries

Gliding arrangement

Speed up to 3 m/s

The gliding cable carrier has to be routed in a channel. See p. 844.

Glide shoes have to be used for gliding applications.

Travel length up to 50 m

Additional load up to 5 ka/m

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

UAT

Subject to change without notice.

K series

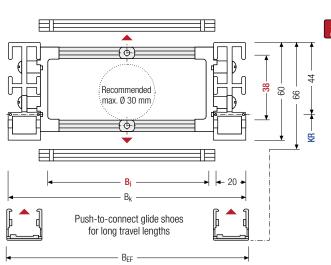

UNIFLEX Advanced series

0060 RS | Dimensions · Technical data

Aluminum stay RS –

frame stay narrow

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 6th section, standard (HS: half-stayed)

Stays on every 3rd section (VS: fully-stayed)

B_i 38 – 500 mm in **1 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR			q_k		
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]			[kg/m]		
38	60					100 120					

* in 1 mm width sections

Order example

M series

> XL series

QUANTUM® series

TKR series

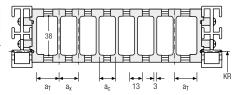
TKA series

UAT

Divider systems

The divider system is mounted on each crossbar as a standard – on every 6^{th} section for stay mounting (HS).

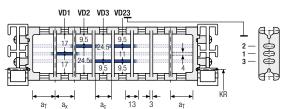
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).


For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping onto a socket (available as an accessory).

The socket additionally acts as a spacer between the dividers and is available in 1 mm sections between 3-50 mm (version B).

Divider system TS0 without height separation

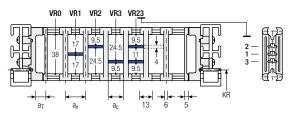
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	13.5	13	10	2


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

Vers.		a _{T max} [mm]			
Α	13.5	20	13	10	2

The dividers can be moved in the cross section.



Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	8.5	21	15	2

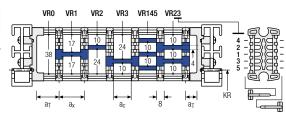
With grid distribution (1 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section.

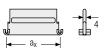
Sliding dividers are optionally available (thickness of divider = 3 mm).

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

UNIFLEX Advanced series

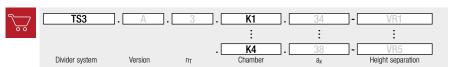

0060 RS | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	[mm]		[mm]	
Α	11	16 / 42*	8	2

* For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a _x (center distance of dividers) [mm]										
	a _c (nominal width of inner chamber) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

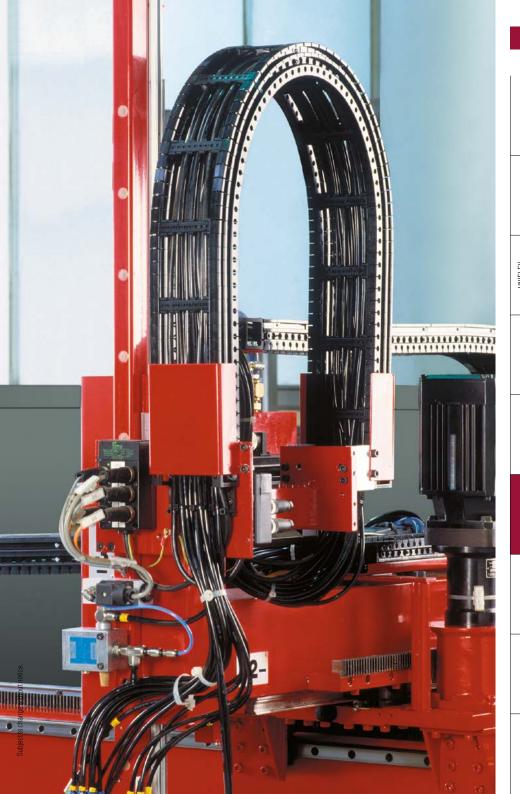
Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) viewed from the left driver belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ downloads

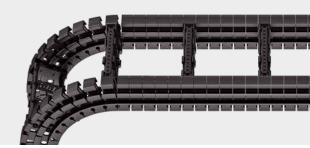


Configure your custom cable carrier here: online-engineer.de

⊼ eries

TKR series

TKA eries

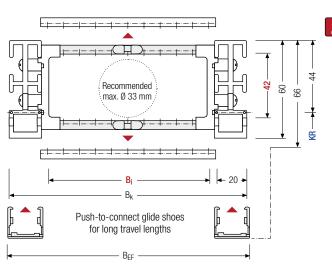


Q060 RE | Dimensions · Technical data

Plastic stay RE -

frame screw-in stay

- Plastic profile bars for light to medium loads. Assembly without screws.
- Available customized in 8 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 6th section, standard (HS: half-stayed)

Stays on every 3rd section **(VS: fully-stayed)**

 B_i 68 – 276 mm in 8 mm width sections

[mm]

92 100 108

228 236 244 252

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

B _{EF}	KR	q_k
[mm]	[mm]	[kg/m]
	100 120	1.16

250 300

1.54

 $B_i + 52$ $B_i + 56$ **150 190**

 B_k

[mm]

42 60

hi

hG

[mm] [mm] [mm]

hgʻ

76

156 164 172 180 188 196 204

140

Order example

116

260 268

124 132

276

PROTU serie

K series

UNIFLEX Advanced series

> M series

XL series

UANTUM® series

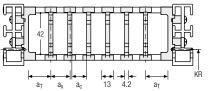
TKR

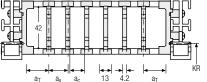
TKA series

UAT

Divider systems

The divider system is mounted on each crossbar as a standard – on every 6th section for stay mounting (HS).

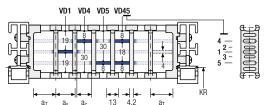

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).


For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (version B). The groove in the frame stay faces outwards.

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	14	13	8.8	-	-
В	14	16	11.8	8	-

The dividers are movable within the cross section (version A) or fixed (version B).



Divider system TS1 with continuous height separation

Vers.					a _{x Raster} [mm]		
Α	14	25	13	8.8	_	2	

The dividers can be moved in the cross section.

TOTALTRAX® complete systems

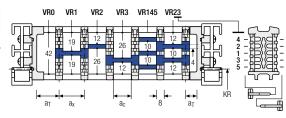
Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

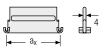
TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

UNIFLEX Advanced series

⊼ eries

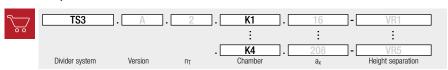

0060 RE | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]		a _{c min} [mm]	n _{T min}
Α	11	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a _x (center distance of dividers) [mm]										
a_{c} (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a twin divider (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system. The height separations VR4 and VR5 are not possible when using twin dividers.

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

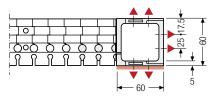
When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) viewed from the left driver belt. You are welcome to add a sketch to your order.

TKR series

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers


Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

TKA eries

UAT series

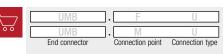
Universal end connectors UMB - plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

6.6 →

▲ Assembly options

Recommended tightening torque: 10 Nm


Connection point

F – fixed pointM – driver

Connection type

U – universal end connector

Order example

We recommend the use of strain reliefs at the driver and fixed point. See from p. 904.

More product information online

Assembly instructions etc.:
Additional info via your
smartphone or check online at
tsubaki-kabelschlepp.com/
downloads

Configure your custom cable carrier here: online-engineer.de

Q080

Pitch 25 mm

Inner height 58 mm

Inner widths 50 - 600 mm

Bending radii 170 - 500 mm

Stay variants

Aluminum stay RS page 480

Frame stay. narrow "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

Aluminum stay RV.....page 484

Frame stay, reinforced

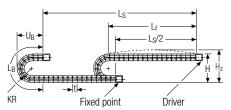
- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Outside/inside: release by rotating 90°.

Plastic stay RE page 488

Frame screw-in stav

- Plastic profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems


Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at

tsubaki-kabelschlepp.com/traxline

KR	Н	L_B	U_{B}
[mm]	[mm]	[mm]	[mm]
170	457	834	379
200	517	928	409
250	617	1085	459
320	757	1305	529
420	957	1619	629
500	1117	1870	709

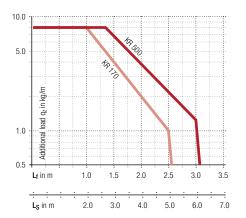
Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths. depending on the specific application.

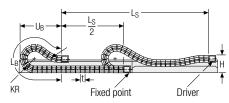
Intrinsic cable carrier weight $q_k = 2.5 \text{ kg/m}$. For other inner widths, the maximum additional load changes.

Speed up to 25 m/s

Travel length


up to 6.4 m

Acceleration up to 100 m/s2


Additional load up to 8 ka/m

UNIFLEX dvanced series

⊼ eries

Gliding arrangement

QUANTUM® series

TKR series

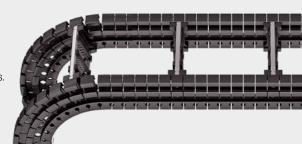
TKA eries

UAT

Speed up to 3 m/s

The gliding cable carrier has to be routed in a channel. See p. 844. Glide shoes have to be used for gliding applications.

Travel length up to 80 m

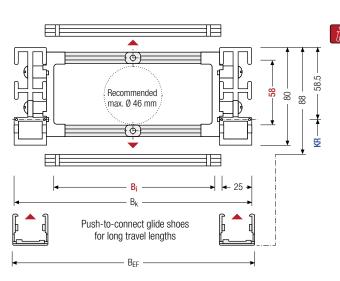

Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

Q080 RS | Dimensions · Technical data

Aluminum stay RS -

frame stay narrow

- Extremely quick to open and close
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.



Stays on every 8th section. standard (HS: half-stayed)

Stays on every 4th section (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length L_k

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

 $\frac{1}{4}$ × 2 – 2

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
58	80	88	50 – 600	B _i + 72	B _i + 79.5	170 200 250 320 420 500	

^{*} in 1 mm width sections

Order example

K series

UNIFLEX Advanced series

> M series

XL series

UANTUM® series

TKR series

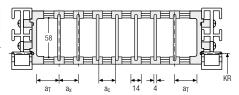
TKA

0080 RS | Inner distribution | TS0 · TS1 · TS2

Divider systems

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

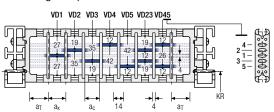
As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).


For applications with lateral acceleration and rotated by 90°. the dividers can be attached by simply clipping onto a socket (available as an accessory).

This socket additionally acts as a spacer between the dividers and is available in a 1 mm grid between 3 - 50 mm. as well as 16.5 and 21.5 mm (version B).

Divider system TS0 without height separation

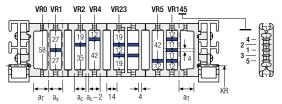
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	11	14	10	2


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

Vers.	[mm]	a _{T max} [mm]	[mm]	[mm]	min
Α	11	25	14	10	2

The dividers can be moved in the cross section.


Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	[mm]	[mm]	n _{T min}
Α	11	23	19	2

With grid distribution (1 mm grid).

The dividers are attached by the height separation. the grid can be moved in the cross section.

Sliding dividers are optionally available (thickness of divider = 4 mm).

Please note that the real dimensions may deviate slightly from the values indicated here.

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

UNIFLEX dvanced series

QUANTUM® series

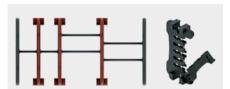
TKR eries

TKA eries

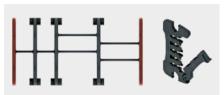
UAT

Subject to change without notice

UNIFLEX Advanced series

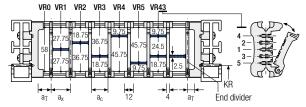

⊼ eries

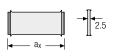
0080 RS | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

Divider version A

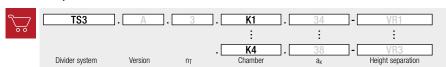

End divider



Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T min
Α	10.5 / 6.5*	14	10	2
* For For	l dividae	• · · · · · · · · · · · · · · · · · · ·	•····	•

For End divider

The dividers are fixed by the partitions. the complete divider system is movable in the cross section.



	a_x (center distance of dividers) [mm]															
a _c (nominal width of inner chamber) [mm] 14 16 19 23 24 28 29 32 33 34 38 39 43 44 48 49 54																
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112	
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108	

When using partitions with $a_x > 49$ mm we recommended an additional preferential central support.

Order example

Please state the designation of the divider system (TS0. TS1....). version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1. TS3) please also state the positions [e.g. VD23] viewed from the left driver belt. You are welcome to add a sketch to your order.

Subject to change without notice.

TKA eries

PR0TUM® series

K series

UNIFLEX Advanced series

> M series

XL series

QUANTUM® series

TKR series

TKA series

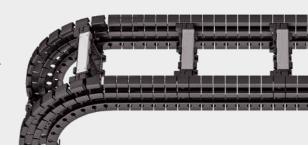
ROTUM® series

K series

UNIFLEX Advanced series

> M series

XL series

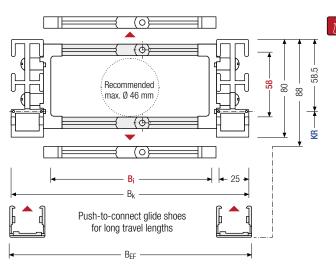

UANTUM® series

> TKR series

TKA eries

Aluminum stay RV – Frame stay reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 8th section. standard (HS: half-stayed)

Stays on every 4th section (VS: fully-stayed)

 $B_i 50 - 600 \text{ mm in}$ 1 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type.
Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

 $\frac{1}{4} \times 2 - 2$

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
58	80	88	50 - 600	B _i + 72	B _i + 79.5	170 200 250 320 420 500	

^{*} in 1 mm width sections

Order example

UAT

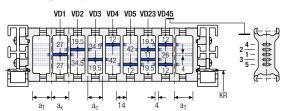
Divider systems

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS). As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	11	14	10	2

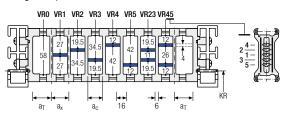
The dividers can be moved in the cross section.



Divider system TS1 with continuous height separation

	a _{T max} [mm]		
Α	 25	 	

The dividers can be moved in the cross section.



Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	12	21	15	2

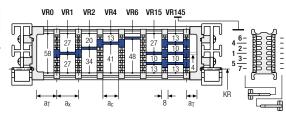
With grid distribution (1 mm grid). The dividers are attached by the height separation. the grid can be moved in the cross section.

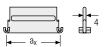
Sliding dividers are optionally available (thickness of divider = 4 mm).

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

UNIFLEX Advanced series

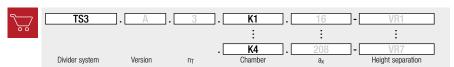

0080 RV | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	8	16 / 42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a _x (center distance of dividers) [mm]												
a _c (nominal width of inner chamber) [mm]													
16	18	23	28	32	33	38	43	48	58	64	68		
8	10	15	20	24	25	30	35	40	50	56	60		
78	80	88	96	112	128	144	160	176	192	208			
70	72	80	88	104	120	136	152	168	184	200			

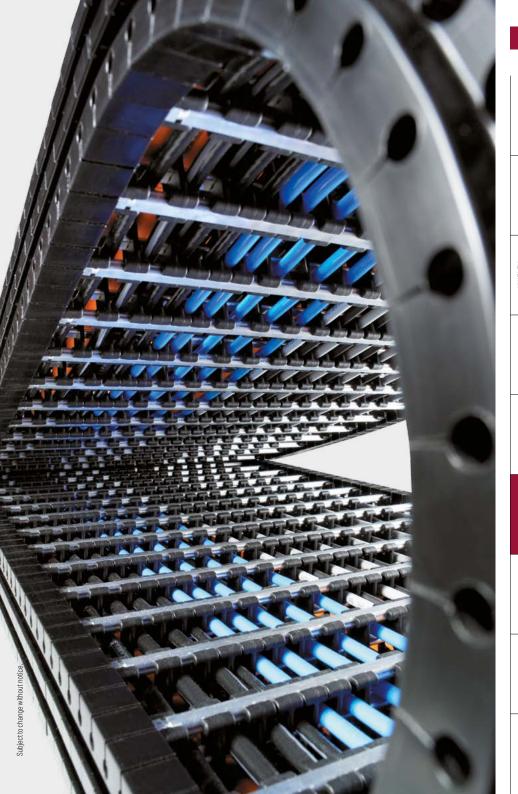
When using plastic partitions with $a_x > 112$ mm. we recommend an additional center support with a twin divider (S_T = 4 mm). Twin dividers are also suitable for retrofitting in the partition system. The height separations VR6 and VR7 are not possible when using twin dividers.

Order example

Please state the designation of the divider system (TS0. TS1....). the version. and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances $[a_T/a_x]$.

When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) viewed from the left driver belt. You are welcome to add a sketch to your order.

More product information online


Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ downloads

Configure your custom cable carrier here: online-engineer.de

TKR series

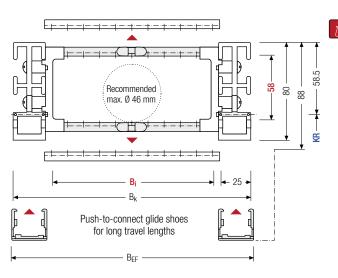
TKA eries

0080 RE | Dimensions · Technical data

Plastic stay RE -

frame screw-in stay

- Plastic profile bars for light to medium loads. Assembly without screws.
- Available customized in 16 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 8th section. standard (HS: half-stayed)

Stays on every 4th section (VS: fully-stayed)

 B_i 58 – 570 mm in **16 mm width sections**

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_{k} \approx \frac{L_{S}}{2} + L_{B}$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

 $\frac{11011011911}{4}$ × 2 – 2

h _i [mm	h _G] [mm]	h _{Gʻ} [mm]		B i [mm]						B _k [mm]	B _{EF} [mm]	KR [mm]	q _k [kg/m]		
58	80	88	202 346	218 362	90 234 378 522	250 394	266 410	282 426	298 442	314	330	R. 1 72	:	170 2 250 3 420 5	320	1.93 - 2.70

Order example

K series

M series

XL series

OUANTUM® Series

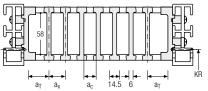
TKR series

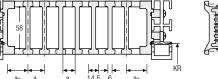
TKA series

UAT

Divider systems

The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

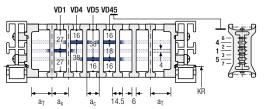

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).


For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (version B). The groove in the frame stay faces outwards.

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]	n _T min
Α	12	14.5	8.5	-	-
В	13	16	10	16	-

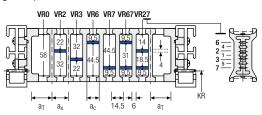
The dividers are movable within the cross section (version A) or fixed (version B).



Divider system TS1 with continuous height separation

Vers.					a _{x Raster} [grid]	n _T min
Α	12	25	14.5	8.5	-	2
В	13	25	16	10	16	2

The dividers are movable within the cross section (version A) or fixed (version B).



Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	12	14.5*/21	8.5*/15	2
В	13	16*/32	10*/26	2

* for VR0

With grid distribution (8 mm grid). The dividers are attached by the height separation, the grid can be moved in the cross section (version A) or fixed (version B).

TOTALTRAX® complete systems

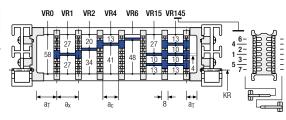
Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

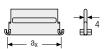
UNIFLEX Advanced series

⊼ eries

TKR series

TKA eries

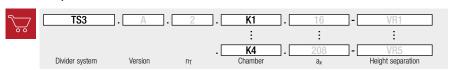

0080 RE | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	[mm]	[mm]		
Α	8	16 / 42*	8	2

* For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a _x (center distance of dividers) [mm]										
	a _c (nominal width of inner chamber) [mm]										
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm. we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system.

Order example

Please state the designation of the divider system (TS0. TS1....). the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) viewed from the left driver belt. You are welcome to add a sketch to your order.

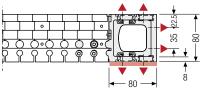
TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers

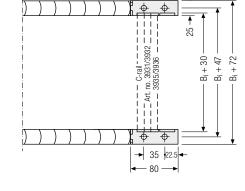
Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

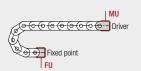
XL eries


M eries

TKR series

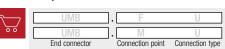
UAT


Universal end connectors UMB - plastic (standard)


The universal end connectors (UMB) are made from plastic and can be mounted from the top. from the bottom or face on.

▲ Assembly options

Recommended tightening torque: 30 Nm for screws M8 - 8.8 18 Nm for screws M8 - 12.9


Connection point

F - fixed point M - driver

Connection type

U – universal end connector

Order example

We recommend the use of strain reliefs at the driver and fixed point. See from p. 904.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ downloads

Configure your custom cable carrier here: online-engineer.de

Q100

Stay variants

Aluminum stay RS page 494

Frame stay narrow "The standard"

- Aluminum profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

Aluminum stay RV page 498

Frame stay, reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Outside/inside: release by rotating 90°.

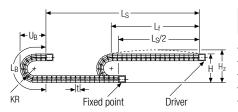
Plastic stay RE page 502

Frame screw-in stav

- Plastic profile bars for light to medium loads. Assembly without screws.
- Outside/inside: release by rotating 90°.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax



TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

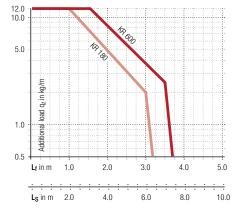
UAT series

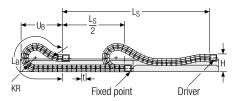
Unsupported arrangement

KR	Н	L _B	U_B
[mm]	[mm]	[mm]	[mm]
180	503	926	432
250	643	1145	502
300	743	1302	552
370	883	1522	622
460	1063	1805	712
600	1343	2244	852

Load diagram for unsupported length depending on the additional load.

Sagging of the cable carrier is technically permitted for extended travel lengths, depending on the specific application.


Intrinsic cable carrier weight $q_k = 3.25$ kg/m. For other inner widths, the maximum additional load changes.



Gliding arrangement

Speed up to 3 m/s

The gliding cable carrier has to be routed in a channel. See p. 844.

Glide shoes have to be used for gliding applications.

Travel length up to 95 m

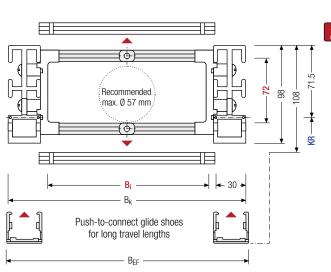
Our technical support can provide help for gliding arrangements: technik@kabelschlepp.de

0100 RS | Dimensions · Technical data

Aluminum stay RS -

frame stay narrow

- Extremely quick to open and close.
- Aluminum profile bars for light to medium loads. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.


Stays on every 8th section, standard (HS: half-stayed)

Stays on every 4th section (VS: fully-stayed)

 $B_i 70 - 600 \text{ mm in}$ 1 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

 $\frac{1}{4} \times 2 - 2$

h _i	h _G	h _{Gʻ}	B _i	B _k	B _{EF}	KR	q_k
[mm]	[mm]	[mm]	[mm]*	[mm]	[mm]	[mm]	[kg/m]
72	98	108	70 – 600	D 1 02	B _i + 89.5	180 250 300 370 460 600	2.6 - 3.4

* in 1 mm width sections

Order example

K series

UNIFLEX Advanced series

> M series

XL series

UANTUM® series

TKR eries

TKA

UNIFLEX dvanced series

> ∠ eries

QUANTUM® series

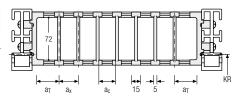
TKR eries

0100 RS | Inner distribution | TS0 · TS1

Divider systems

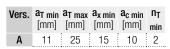
The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

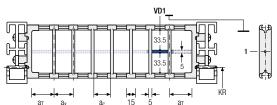

For applications with lateral acceleration and rotated by 90°, the dividers can be attached by simply clipping onto a socket (available as an accessory).

The socket additionally acts as a spacer between the dividers and is available in 1 mm sections between 3 – 50 mm (version B).

Divider system TS0 without height separation


Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	11	15	10	2

The dividers can be moved in the cross section.



Divider system TS1 with continuous height separation

The dividers can be moved in the cross section.

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section $[n_{\overline{1}}]$.

When using divider systems with height separation (TS1), please additionally state the positions (e.g. VD1) viewed from the left driver belt. You are welcome to add a sketch to your order.

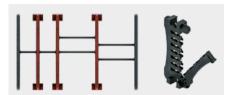
UAT eries

TKA eries

0100 RS | Inner distribution | TS3

Divider system TS3 with height separation consisting of plastic partitions

As a standard, the divider version A is used for vertical partitioning within the cable carrier. The complete divider system can be moved within the cross section.

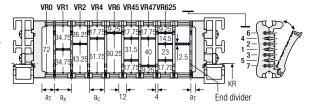

UNIFLEX Advanced series

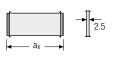
∠ eries

TKA eries

UAT

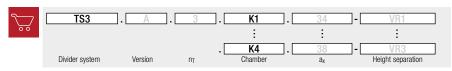
Divider version A




End divider

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _T min
Α	10.5 / 6.5*	14	10	2
* For End	dividor			•••••

The dividers are fixed by the partitions, the complete divider system is movable in the cross section.



					a _x (ce	enter	dista	nce o	f divi	ders)	[mm]	a_x (center distance of dividers) [mm]										
	a _c (nominal width of inner chamber) [mm]																					
14	16	19	23	24	28	29	32	33	34	38	39	43	44	48	49	54						
10	12	15	19	20	24	25	28	29	30	34	35	39	40	44	45	50						
58	59	64	68	69	74	78	79	80	84	88	89	94	96	99	112							
54	55	60	64	65	70	74	75	76	80	84	85	90	92	95	108							

When using partitions with $a_x > 49$ mm we recommended an additional preferential central support.


Order example

Please state the designation of the divider system (TS0, TS1,...), version and number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x] (as seen from the driver).

If using divider systems with height separation (TS1, TS3) please also state the positions [e.g. VD23] viewed from the left driver belt. You are welcome to add a sketch to your order.

UAT series

K series

UNIFLEX Advanced series

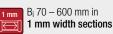

> M series

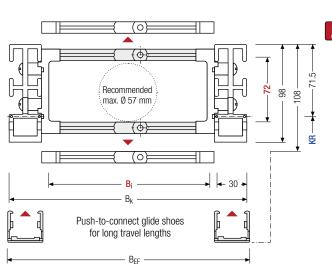
XL eries

Q100 RV | Dimensions · Technical data

Aluminum stay RV – Frame stay reinforced

- Aluminum profile bars with plastic adapter for medium to high loads and large cable carrier widths. Assembly without screws.
- Available customized in 1 mm sections.
- Outside/inside: release by rotating 90°.





Stays on every 8th section, standard (HS: half-stayed)

Stays on every 4th section (VS: fully-stayed)

The maximum cable diameter strongly depends on the bending radius and the desired cable type. Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

Cable carrier length L_k rounded to pitch t

Number of glide shoes

Pitch per cable carrier length

$$\times 2-2$$

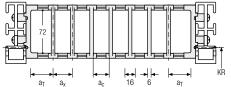
h _i	h _G [mm]	h _{Gʻ} [mm]	B _i [mm]*	B _k [mm]	B _{EF}	KR [mm]	q_k [kg/m]
72				B _i + 82	B _i + 89.5	180 250 300 370 460 600	2.8 – 4.6

^{*} in 1 mm width sections

Order example

TKA eries

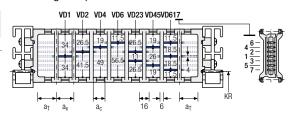
Divider systems


The divider system is mounted on each crossbar as a standard – on every 8th section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

Divider system TS0 without height separation

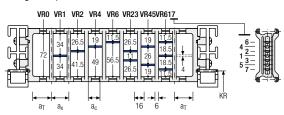
Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	13	16	10	2


The dividers can be moved in the cross section.

Divider system TS1 with continuous height separation

Vers. a_{T min} a_{T max} a_{x min} a_{c min} n_T min n_T min min A 13 25 16 10 2

The dividers can be moved in the cross section.



Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	13	21	15	2

With grid distribution (1 mm grid).
The dividers are attached by the height separation, the grid can be moved in the cross section.

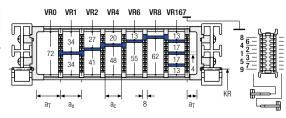
Sliding dividers are optionally available (thickness of divider = 6 mm).

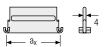
Subject to change without notice.

TRAXLINE® cables for cable carriers

Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

UNIFLEX Advanced series

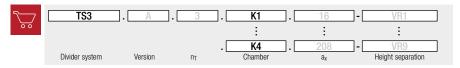

0100 RV | Inner distribution | TS3


Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}
Α	8	16/42*	8	2

^{*} For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.



Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

	a_x (center distance of dividers) [mm]												
	a _c (nominal width of inner chamber) [mm]												
16	16 18 23 28 32 33 38 43 48 58 64 68												
8	10	15	20	24	25	30	35	40	50	56	60		
78	80	88	96	112	128	144	160	176	192	208			
70	72	80	88	104	120	136	152	168	184	200			

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a twin divider ($S_T = 4 \text{ mm}$). Twin dividers are also suitable for retrofitting in the partition system. The height separations VR8 and VR9 are not possible when using twin dividers.

Order example

Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) viewed from the left driver belt. You are welcome to add a sketch to your order.

More product information online

Assembly instructions etc.: Additional info via your smartphone or check online at tsubaki-kabelschlepp.com/ downloads

Configure your custom cable carrier here: online-engineer.de

∠ eries

TKR series

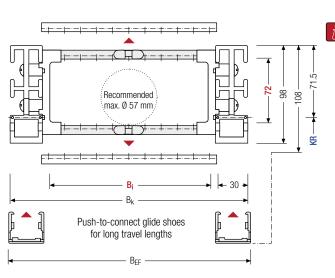
TKA eries

UAT

Plastic stay RE - frame

screw-in stay

- Plastic profile bars for light and medium loads. Asser bly without screws.
- Available customized in **16 mm sections**.
- Outside/inside: release by rotating 90°.


Stays on every 8th section, standard (HS: half-stayed)

Stays on every 4th section **(VS: fully-stayed)**

 $B_i 74 - 570 \text{ mm in}$ 16 mm width sections

The maximum cable diameter strongly depends on the bending radius and the desired cable type.

Please contact us.

Calculating the cable carrier length

Cable carrier length Lk

$$L_k \approx \frac{L_S}{2} + L_B$$

 $\begin{array}{c} \text{Cable carrier length } L_k \\ \text{rounded to pitch } t \end{array}$

Number of glide shoes Pitch per cable carrier length

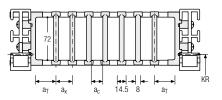
h _i [mm]	h _G [mm]	h _{Gʻ} [mm]					$\begin{array}{c} B_i \\ \text{[mm]} \end{array}$					B _k [mm]	B _{EF} [mm]	KI [mr	q _k [kg/m]
72	98	108	74 218 362	90 234 378	106 250 394	122 266 410	138 282 426	154 298 442	170 314 458	186 330 474	202 346 490	B _i + 82	B _i + 89.5	180 300 460	
							570								 0.07

Order example

Divider systems

The divider system is mounted on each crossbar as a standard – on every 8^{th} section for stay mounting (HS).

As a standard, dividers or the complete divider system (dividers with height separations) are movable in the cross section (version A).

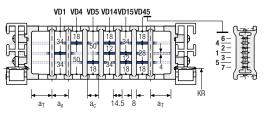

For applications with lateral accelerations and applications with the cable carrier rotated by 90°, the dividers can easily be fixed by turning the frame stay by 180°. The arresting cams click into place in the locking grids in the crossbar (version B).

The groove in the frame stay faces outwards.

Divider system TS0 without height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]		a _{x grid} [mm]	n _T min
Α	12	14.5	6.5	-	-
В	13	16	8	16	_

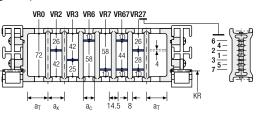
The dividers are movable within the cross section (version A) or fixed (version B).



Divider system TS1 with continuous height separation

Vers.					a _{x grid} [mm]	
Α	12	25	14.5	6.5	-	2
В	13	29	16	8	16	2

The dividers are movable within the cross section (version A) or fixed (version B).



Divider system TS2 with partial height separation

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	a _{x grid} [mm]	n _T
Α	12	14.5*/20	6.5*/12	-	2
В	13	16*/32	8*/24	16	2

* for VR0

With grid distribution (16 mm grid). The dividers are fixed by the height separation; the grid is movable in the cross section (version A) or fixed (version B).

PKUIUM® Series

zries

UNIFLEX Advanced series

> M series

XL series

QUANTUM[®] series

> TKR series

> TKA series

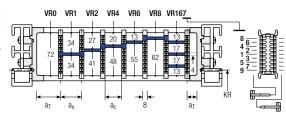
> UAT series

UNIFLEX Advanced series

∠ eries

TKR series

TKA eries


0100 RE | Inner distribution | TS3

Divider system TS3 with height separation consisting of plastic partitions

Vers.	a _{T min} [mm]	a _{x min} [mm]	a _{c min} [mm]	n _{T min}	
Α	8	16/42*	8	2	

* For aluminum partitions

The dividers are fixed with the partitions. The entire divider system can be moved in the cross section.

Aluminum partitions in 1 mm increments with $a_x > 42 \text{ mm}$ are also available.

a _x (center distance of dividers) [mm]											
a _c (nominal width of inner chamber) [mm]											
16	18	23	28	32	33	38	43	48	58	64	68
8	10	15	20	24	25	30	35	40	50	56	60
78	80	88	96	112	128	144	160	176	192	208	
70	72	80	88	104	120	136	152	168	184	200	

When using plastic partitions with $a_x > 112$ mm, we recommend an additional center support with a **twin divider** ($S_T = 4$ mm). Twin dividers are also suitable for retrofitting in the partition system. The height separations VR8 and VR9 are not possible when using twin dividers.

Order example

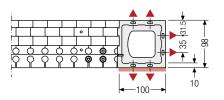
Please state the designation of the divider system (TS0, TS1,...), the version, and the number of dividers per cross section [n_T]. In addition, please also enter the chambers [K] from left to right, as well as the assembly distances [a_T/a_x].

When using divider systems with height separation (TS1 - TS3), please additionally state the positions (e.g. VD23) viewed from the left driver belt. You are welcome to add a sketch to your order.

TOTALTRAX® complete systems

Benefit from the advantages of the TOTALTRAX® complete system. A complete delivery from one source – with a warranty certificate on request! Learn more at tsubaki-kabelschlepp.com/totaltrax

TRAXLINE® cables for cable carriers


Hi-flex electric cables which were especially developed, optimized and tested for use in cable carriers can be found at tsubaki-kabelschlepp.com/traxline

subject to change without notice.

UAT series

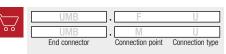
Universal end connectors UMB - plastic (standard)

The universal end connectors (UMB) are made from plastic and can be mounted from the top, from the bottom or face on.

10.65

▲ Assembly options

Recommended tightening torque: 49 Nm for screws M10 - 8.8 55 Nm for screws M10 - 12.9


Connection point

F – fixed pointM – driver

Connection type

U – universal end connector

Order example

We recommend the use of strain reliefs at the driver and fixed point. See from p. 904.

More product information online

Assembly instructions etc.:
Additional info via your
smartphone or check online at
tsubaki-kabelschlepp.com/
downloads

Configure your custom cable carrier here:

online-engineer.de